library(inteRact)
#> Loading required package: actdata
library(actdata)
library(tidyverse)
#> ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
#> ✔ ggplot2 3.4.0 ✔ purrr 0.3.5
#> ✔ tibble 3.1.8 ✔ dplyr 1.0.10
#> ✔ tidyr 1.2.1 ✔ stringr 1.5.0
#> ✔ readr 2.1.3 ✔ forcats 0.5.2
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#> ✖ dplyr::filter() masks stats::filter()
#> ✖ dplyr::lag() masks stats::lag()
library(here)
#> here() starts at /Users/emilymaloney/Dropbox/Grad_School/Quant_qual/inteRact
Step 1: Load data, select events
#get US 2015 dictionary
us_2015 <- epa_subset(dataset = "usfullsurveyor2015")
#make a dataframe of events
set.seed(129)
events <- tibble(actor_modifier = sample(us_2015$term[us_2015$component == "modifier"], 50),
actor = sample(us_2015$term[us_2015$component == "identity"], 50),
behavior = sample(us_2015$term[us_2015$component == "behavior"], 50),
object = sample(us_2015$term[us_2015$component == "identity"], 50))
Step 2: Reshape the dataframe to have EPA values
analysis_df <- reshape_events_df(events, df_format = "wide",
dictionary_key = "usfullsurveyor2015",
dictionary_gender = "average")
#> Joining, by = c("term", "component")
Step 3: Nest your dataframe by event id and indicate the equation you will be using for your calculations - must be in the format “{equation_key}_{gender}” with the equation key coming from the actdata package.
nested_analysis <- analysis_df %>% ungroup() %>%
nest_by(event_id) %>%
mutate(equation_key = "us2010",
equation_gender = "average")
Step 4: Run some calculations
deflection <- nested_analysis %>%
mutate(d = get_deflection(d = data,
equation_key = equation_key,
equation_gender = equation_gender))
start_time <- Sys.time()
multiple_functions <- nested_analysis %>%
mutate(d = get_deflection(d = data,
equation_key = equation_key,
equation_gender = equation_gender),
ti = list(transient_impression(d = data,
equation_key = equation_key,
equation_gender = equation_gender)),
actor_reidentified = list(reidentify_actor(d = data,
equation_key = equation_key,
equation_gender = equation_gender)))
end_time <- Sys.time()